USN

Third Semester B.E. Degree Examination, December 2011 Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Define electric field intensity due to point charge in a vector form. With usual notations derive expressions for field at a point due to many charges. (06 Marks)
 - b. State and prove Gauss's law.

c. Given $\vec{D} = 30e^{-r}\hat{a}_r - 2z\hat{a}_z$ c/mt². Verify divergence theorem for the volume enclosed by r = 2, z = 5.

- 2 a. Derive an expression for energy and energy density in an electrostatic field. (04 Marks)
 - b. A 15 nc point charge is at the origin in free space. Calculate v_1 if point P is located at P(-2, 3, -1) and : i) V = 0 at (6, 5, 4) ii) V = 0 at infinity. (08 Marks)
 - c. If $\vec{E} = -8xy\hat{a}_x 4x^2\hat{a}y + \hat{a}_z$ v/m, find the work done in carrying a 6C charge from A(1, 8, 5) to B(2, 18, 6) along the path y = 3x + 2, z = x + 4. (08 Marks)
- 3 a. Starting with point form of Gauss law deduce Poisson's and Laplace's equations. (06 Marks)
 - b. Use Laplace's equation to find the capacitance per unit length of a co-axial cable of inner radius 'a' m and outer radius 'b' m. Assume $v = v_0$ at r = a and v = 0 at r = b. (08 Marks)
 - c. Determine whether or not the potential equations: $V = 2x^2 - 4y^2 + z^2 \text{ ii) } V = r^2 \cos \phi + \theta \text{ iii)} V = r \cos \phi + z$

satisfy the Laplace's equation.

(06 Marks)

- 4 a. Starting from Biot-Savart law, derive an expression for the magnetic field intensity at a point due to finite length of current carrying conductor. (06 Marks)
 - b. Calculate the value of vector current density at P(1.5, 90°, 0.5) if $\vec{H} = \frac{2}{r} \cos 0.2 \phi \hat{a}_r$.

 (04 Marks)

c. Evaluate both sides of the Stoke's theorem for the field $\vec{H} = 6xy \, \hat{a}_x - 3y^2 \, \hat{a}_y$ A/m and the rectangular path around the region $2 \le x \le 5, -1 \le y \le 1, z = 0$. (10 Marks)

PART - B

- 5 a. Obtain boundary conditions at the interface between two magnetic materials. (06 Marks)
 - b. A circular loop of 10 cm radius is located in xy plane with magnetic field $\vec{B} = 0.5\cos(377t)[3\hat{a}_y + 4\hat{a}_z]T$. Calculate the voltage induced by the loop. (06 Marks)
 - c. A single trun circular coil 5 cm diameter carries a current of 2.8 A. Determine the magnetic flux density \vec{B} at a point on the axis 10 cm from the center. Derive the formula used.

 (08 Marks)

- 6 a. What is displacement current and equation of continuity? Derive Maxwell's equation for Ampere's circuit law. (06 Marks)
 - b. Determine whether or not the following pairs of fields satisfy Maxwell's equation.

$$\vec{E} = E_m \sin x \sin t \hat{a}_y \quad v/m$$

$$\vec{H} = \frac{E_m}{\mu} \cos x \cos \hat{a}_z \quad v/m$$

- c. A parallel plate capacitor with plate area 5 cm² and plate separation of 3 mm has a voltage of 50 sin 10³ t volts applied to its plates. Calculate the displacement current assuming ∈ = 2 ∈ 0. (08 Marks)
- 7 a. For an electromagnetic wave propagating in free space prove that $\frac{|\vec{E}|}{|\vec{H}|} = \eta$. (08 Marks)
 - b. State and explain Poynting's theorem. (06 Marks)
 - c. Calculate intrinsic impedance η , propagation constant γ and wave velocity ν for a conducting medium in which $\sigma = 58$ MS/m, $\mu_r = 1$, $\epsilon_r = 1$ at frequency of 100 MHz. (06 Marks)
- 8 a. Define standing wave ratio. What is its relationship with the reflection co-efficient?
 (08 Ma
 - b. A uniform plane wave of 200 MHz travelling in a free space impinges normally on a large block of material having $\epsilon_r = 4$, $\mu_r = 9$, $\sigma = 0$. Calculate transmission and reflection coefficients at the interface.
 - c. With usual notations, obtain the general wave equations for electric and magnetic fields.
 (06 Marks)

* * * * *